Fine-Scale Surface Normal Estimation Using a Single NIR Image
نویسندگان
چکیده
We present surface normal estimation using a single near infrared (NIR) image. We are focusing on fine-scale surface geometry captured with an uncalibrated light source. To tackle this ill-posed problem, we adopt a generative adversarial network which is effective in recovering a sharp output, which is also essential for fine-scale surface normal estimation. We incorporate angular error and integrability constraint into the objective function of the network to make estimated normals physically meaningful. We train and validate our network on a recent NIR dataset [1], and also evaluate the generality of our trained model by using new external datasets which are captured with a different camera under different environment.
منابع مشابه
Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملEstimation of Roughness Parameters of A Surface Using Different Image Enhancement Techniques (TECHNICAL NOTE)
Surface roughness measurement is widely used to estimate the quality of the product during manufacturing processes. It has a great importance in manufacturing fields such as ceramic tiles, glass, and iron. Many are using surface profile-meter with a contact stylus to measure the surface roughness of work piece. In the stylus method, a stylus is moved along the surface and the vertical movement ...
متن کاملتحلیل حرکت جریانات دریائی در تصاویر حرارتی سطح آب دریا
Oceanographic images obtained from environmental satellites by a wide range of sensors allow characterizing natural phenomena through different physical measurements. For instance Sea Surface Temperature (SST) images, altimetry data and ocean color data can be used for characterizing currents and vortex structures in the ocean. The purpose of this thesis is to derive a relatively complete frame...
متن کاملVelocity Inversion with an Iterative Normal Incidence Point (NIP) Wave Tomography with Model-Based Common Diffraction Surface (CDS) Stack
Normal Incidence Point (NIP) wave tomography inversion has been recently developed to generate a velocity model using Common Reflection Surface (CRS) attributes, which is called the kinematic wavefield attribute. In this paper, we propose to use the model based Common Diffraction Surface (CDS) stack method attributes instead of data driven Common Reflection Surface attributes as an input data p...
متن کاملSURGE: Surface Regularized Geometry Estimation from a Single Image
This paper introduces an approach to regularize 2.5D surface normal and depth predictions at each pixel given a single input image. The approach infers and reasons about the underlying 3D planar surfaces depicted in the image to snap predicted normals and depths to inferred planar surfaces, all while maintaining fine detail within objects. Our approach comprises two components: (i) a fourstream...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016